Ergonomic Considerations for Workstation Design

Chicagoland Safety Congress and Expo
NIU Extension Campus/ Naperville, IL
September 19, 2012

Stanford (Stan) A Brubaker/CIE, CPE,CSP, CPSM
Liberty Mutual Loss Control Advisory Services

“Our loss control service is advisory only. We assume no responsibility for management or control of customer safety activities nor for implementation of recommended corrective measures. This presentation is based on information supplied by the customer and/or observations of conditions and practices at the time of the consultation. We have not tried to identify all hazards. We do not warrant that requirements of any federal, state, or local law, regulation or ordinance have or have not been met.”
Session Objectives

By the conclusion of this session, participants should be able to:

– Link workstation design principles to reduced fatigue, greater efficiency & higher performance
– Apply anthropometry concepts to recognize variability among your workforce
– Use design concepts and data to establish correct ranges for performing tasks
– Apply principles of workstation design to sitting and standing workstations
Preliminary Design Considerations

- Characteristics of users vs. job demands
- Materials and tools handled
- Visual and tactile requirements
- Precision tolerances needed
- Methods to operate machines/ tools
Anthropometry

The study of human (anthrop) physical dimensions and measurements (metrics)

"Our loss control service is advisory, corrective measures. This presentation is based on information supplied by the customer and/or observations of conditions and practices at the time of the consultation. We have not tried..."
Male Height Distribution

69.13 in.

-3 -2 -1 +1 +2 +3

68% 95% 97.5%
Female Height Distribution

64.15 in.

-3 -2 -1 +1 +2 +3

68% 95% 97.5%
Male and Female Distribution Combined

66.64 in.

95%
Anthropometric Design Principle

• GOAL- To accommodate 90- 95% of your working population
Anthropometric Principles

- Clearance specifications should be based on larger users (stature, profile, frame, etc.)
- Ergo reach envelopes should be based on smaller users, but need to accommodate others-
 - Machine safety vs. ergo factors (movement efficiency)
- Critical points should consider extremes
- Adjustability should be incorporated when possible
Anthropometry

• Whole body dimensions
• Body landmark dimensions
• Body segment dimensions
• Functional dimensions
Anthropometric Data

Whole body dimensions

Height
Weight
Anthropometric Data

Body landmark dimensions

(e.g., note body segment dimensions – wrist to elbow)
Anthropometric Data

Functional dimensions

(Job demands vs. capability of employees)
Anthropometry Process

• WHO? Define your work/user population
• WHAT? Determine proportion for design; acquire anthropometric data
• WHAT? Determine applicable dimensions
• HOW? Modify data with allowances
Steps for order picking:

1. Design for 95th to 5th percentile
2. Determine acceptable range for workforce
 - Determine difference between fingertip vs. power grip reach.
 - Determine 5th tile female shoulder height + 1" for shoes.
 - Determine 95th tile male knuckle height + 1" for shoes.
Emergency Stop Features

Determine Range for Emergency Stop

Alternatives ‘may’ include-
- Buttons
- Trip cables
- Kick plates
- Body bars

Bear in mind-
- Reach, height, sight, mobility, language, noise, etc.
What Must be Seen?
Degree of Precision

- Characteristics of the object
- Characteristics of the tools
- Sit - Stand - or both?
Sit or Stand?

<table>
<thead>
<tr>
<th>Sitting</th>
<th>Standing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less fatiguing</td>
<td>More fatiguing</td>
</tr>
<tr>
<td>Less mobility</td>
<td>More mobility</td>
</tr>
<tr>
<td>More stability</td>
<td>Less stability</td>
</tr>
<tr>
<td>Lower exertable forces</td>
<td>Higher exertable forces</td>
</tr>
<tr>
<td>Foot or hand controls</td>
<td>Hand controls</td>
</tr>
</tbody>
</table>
Guidelines For Standing Workstations

• Often-accessed materials to reach-
 –Within 15”, other materials within 25”
• When reaching overhead, down/behind the body is not required (controls, tools, materials)
 –task can be performed with either hand
 –hands at appropriate height for precision/exertion
• Work-piece can be made ‘height adjustable’
Work Surface Height

Precision work - 2” - 4” above elbow height

Normal light hand work - 2 -4” below elbow height

Heavy work (large downward forces) - 4” - 8” below elbow height
Guidelines For Standing Workstations (cont)

• Equipment, parts, bins, tool boxes, etc. are
 – designed to access with neutral upper extremities
 – no accumulation of foreign materials on the floor
 – not something that requires significant balance

• Provide means of back support with -
 – Cushioned floor mat
 – Footwear insoles designed/fit for the user’s shoe
 – Foot rest (up to 8“)

• Sitting down possible option if no continuous standing
 – Latest studies (OSU) show some movement is good!
 • http://www.workforce.com/article/20120809/NEWS02/120809933/ohio-state-university-takes-a-stand-against-sitting-for-too-long#
Example 1; Range for Control Location

Steps:
1. Determine for whom you will design
 - 5%-95% vs. all users?
2. Determine acceptable range for access
 - Reach of shortest female & fingertip height of tallest male
3. Determine preferred range for access
 - Determine height of 5%tile female and add 1" for shoes
 - Determine elbow height for 95%tile male and add 1" for shoes

* Safety distance criteria will be an essential component involved with your calculation; refer to ANSI B11.19-2010 for more detail.
Example 2; Machine Feeding Position

Steps:
1. For seated tasks, need adequate leg space
 - Determine 95%tile male popliteal height
 - Add thigh and heel height
2. Determine chair height range
 - Determine from above
 - Add heel heights for lower level chair heights
 - Subtract 5%tile female thigh height from 95%tile male thigh height
 - Add thigh difference to lower level for upper level chair heights.
3. Other design considerations;
 - Height of point of operation
 - Determine 5%tile female elbow height
 - Add to upper chair height
 - Determine maximum table height thickness (include tub, bolster, etc.)
Example 3; Common Palletizing Tasks

Risk Factors Observed-
- Highly repetitive, pace determined by production flow
- Very manual, no mechanical assists
- Full range of movement from floor to above shoulder height

Solutions and Ideas-
- SOP to avoid manual stacking over shortest female worker and lower than tallest male knee height
- Examine product weight and limit sizes and re-packed content where possible
- Introduce workflow design concepts
- Test drive auto palletizer or OH lift system
Individual Differences:
Most Important Are Age and Gender

- We get shorter as we age
- We get weaker as we age
- Women have <50% isometric strength as men
- Female heart rates are higher
- Females recover faster from exertions
- 8% of males are color deficient
- Response time, vision, hearing deteriorate with age
- 10% of population is left handed
Guidelines For Seated Workstations

• Chairs (dependent on setting, demands, env.
 – Backrest, lumbar support, cushioned seat pan, waterfall front edge, 5 leg base

• Other desirable features include-
 – Height is adjustable
 – Allows for some movement
 – Often-accessed materials within 15" reach distance, others within 25”
 – Reaching overhead or down and behind the body is not required to access controls, tools materials or equipment
Workstation Layout
• The task can be performed with either hand
• There is room for knees/feet below the work surface
• Hands are at elbow height
• Height of the work surface is adjustable
• Equipment, parts, bins, tool boxes, etc. are designed to allow access and operation with the upper extremities in neutral postures
• Opportunities to stand are designed into the work
General Guidelines (cont)

• Keep elbows down
• Shoulder abduction <30°
• Avoid long reaches (>16”)
• Head tilt <15°
Tasks That Require Physical Bending

• Keep work at the mid-range level (knuckle height to shoulder height)

• Use lift tables, work dispensers, or other aids to raise the work-level
 – Design to use gravity where possible (e.g. conveyors, chutes, ball transfer, etc.)

• Provide material at multi work-levels
 – Carousels, elevated surfaces, tilted bins, etc.

• Keep material off the floor if the material must be raised later
 – Consider storage arrangements, how it gets there and how it gets moved
Tasks That Require Twisting

• Position all materials/tools in front of the worker
• Use conveyors, chutes, slides or turntables to change the direction of material flow
• Provide adjustable swivel chairs for seated workers
• Provide sufficient work area for whole body to turn
 – Change in foot position is vital, but avoid carries
• Improve workstation layout to eliminate need to twist
Workstation Design Summary

• Proper design of workstations can minimize fatigue and enhance performance and output

• Ergonomic design will minimize MSD risk factors

• Know who you are designing for and accommodate them

• Consider the big picture (how one task design affects others)

• Adjustability is critical!
Resources and Guidance

- Thomas Bernard (University of South FL)
 - Data from Kodak's Ergonomic Design for People at Work, 2nd Ed. Table 1.5, pp 48 – 49

- Task lighting standards or Lighting Industrial Environments

- ANSI/HFES 1000

- Liberty Mutual Research Center data